HTML5 Webook
61/112

を積極的に導入することで、脳の半球間抑制を改善して、手指の巧緻性を向上させることも大いに期待できるといえる。5で紹介した結果は、高齢化に伴う抑制機能の低下は決して不可逆的なものではなく、トレーニングによって改善できること、また、この抑制機構の改善は、脳機能の改善にもつながる可能性を示している。これまでの脳のトレーニングは脳を活性化することに重点がおかれてきたが、我々は世界ではじめて脳の抑制機構を改善することで脳機能を向上させることができることを示した。今後は、他の脳領域の機能低下した抑制を対象としたトレーニングを開発し、その有効性を検証しながら、手足協調運動機能や認知課題と運動課題の同時遂行機能などを改善できるトレーニングの提案を目指していく。謝辞本稿で紹介した研究は、多くの共同研究者のご協力の下、行った。特に5で紹介したトレーニング効果の検証は、ミズノ株式会社との共同研究として行った。ここにすべての共同研究者に感謝の意を表します。最後に日ごろから研究を支援してくれる上山恵子さん、大西映子さんに心より感謝いたします。参考文献】【1N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann, “Neurophysiological investigation of the basis of the fMRI signal,” Na-ture, vol.412, pp.150–157, 2001. DOI:10.1038/35084005.2A. Shmuel, M. Augath, A. Oeltermann, and N. K. Logothetis, “Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1,” Nature neuroscience, vol.9, no.4, pp.569–577, 2006. DOI:10.1038/nn1675.3A. T. Smith, A. L. Williams, and K. D. Singh, “Negative BOLD in the visual cortex: evidence against blood stealing,” Human brain mapping, vol.21, no.4, pp.213–220, 2004. DOI: 10.1002/hbm.20017.4B. N. Pasley, B. A. Inglis and R. D. Freeman, “Analysis of oxygen me-tabolism implies a neural origin for the negative BOLD response in human visual cortex,” Neuroimage, vol.36, no.2, pp.269–276, 2007. DOI:10.1016/j.neuroimage.2006.09.015.5L. Boorman, A. J. Kennerley, D. Johnston, M. Jones, Y. Zheng, P. Redgrave, and J. Berwick, “Negative blood oxygen level dependence in the rat: a model for investigating the role of suppression in neurovascular coupling,” Journal of Neuroscience, vol.30, no.12, pp.4285–4294, 2010. DOI:10.1523/JNEUROSCI.6063-09.2010.6A. R. Wade and J. Rowland, “Early suppressive mechanisms and the negative blood oxygenation level-dependent response in human visual cortex,” Journal of Neuroscience, vol.30, no.14, pp.5008–5019, 2010. DOI:10.1523/JNEUROSCI.6260-09.2010.7M. Moraschi, M. DiNuzzo, and F. Giove, “On the origin of sustained negative BOLD response,” Journal of Neurophysiology, vol.108, no.9, pp.2339–2342, 2012. DOI:10.1152/jn.01199.2011.8S. Sten, K. Lundengard, S. T. Witt, G. Cedersund, F. Elinder, and M. Engström, “Neural inhibition can explain negative BOLD responses: a mechanistic modelling and fMRI study,” NeuroImage, vol.158, pp.219–231, 2017. DOI:10.1016/j.neuroimage.2017.07.002.9朴 志勲, 小椋 基弘, 河合 祐司, 浅田 稔, “スパイキングニューロンモデルの興奮性/抑制性バランスがネットワーク形成に及ぼす影響,” 電子情報通信学会 ニューロコンピューティング研究会, vol.119, no.88, pp.15–20, 2019.10J. Park, Y. Kawai, and M. Asada, “Self-organization of connectivity in spiking neural networks with balanced excitation and inhibition,” The 29th Annual Computational Neuroscience Meeting: BMC Neuroscience, vol.21, Suppl.1, pp.4, 2020.11P. J. Laurienti. J. H. Burdette, M. T. Wallace, Y. F. Yen, A. S. Field, and B. E. Stein, “Deactivation of sensory-specific cortex by cross-modal stimuli,” Journal of cognitive neuroscience, vol.14, no.3, pp.420–429, 2002. DOI: 10.1162/089892902317361930.12T. Morita, M. Asada, and E. Naito, “Developmental changes in task-induced brain deactivation in humans revealed by a motor task,” Devel-opmental Neurobiology, vol.79, no.6, pp.536–558, 2019. DOI: 10.1002/dneu.22701.13T. Morita, M. Asada, and E. Naito, “Examination of the develop-ment and aging of brain deactivation using a unimanual motor task,” Advanced Robotics, vol.35, no.13-14, pp.842-857, 2021. DOI: 10.1080/01691864.2021.1886168.14E. Naito, T. Morita, S. Hirose, N. Kimura, H. Okamoto, C. Kamimukai, and M. Asada, “Bimanual digit training improves right-hand dexterity in older adults by reactivating declined ipsilateral motor-cortical inhibi-tion,” Scientific Reports, vol.11, Article number: 22696, 2021. DOI: 10.1038/s41598-021-02173-7.15E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on Neural Networks, vol.14, no.6, pp.1569–1572, 2003. DOI: 10.1109/TNN.2003.820440.16S. Song and L. F. Abbott, “Cortical development and remapping through spike timing-dependent plasticity,” Neuron, vol.32, no.2, pp.339–350, 2001. DOI: 10.1016/S0896-6273(01)00451-2.17M. A. Goodale and A. D. Milner, “Separate visual pathways for percep-tion and action,” Trends in Neurosciences, vol.15, no.1, pp.20–25, 1992. DOI:10.1016/0166-2236(92)90344-8.18N. U. Dosenbach, B. Nardos, A. L. Cohen, D.A. Fair, J. D. Power, J. A. Church, S. M. Nelson, G. S. Wig, A. C. Vogel, C. N. Lessov-Schlaggar, K. A. Barnes, J. W. Dubis, E. Feczko, R. S. Coalson, J. R. Pruett Jr, D. M. Barch, S. E. Petersen, and B. L. Schlaggar, “Prediction of indi-vidual brain maturity using fMRI,” Science, vol.329, no.5997, pp.1358–1361. 2010, DOI: 10.1126/science.1194144.19D. A. Fair, N. U. Dosenbach, J. A. Church, A. L. Cohen, S. Brahmbhatt, F. M. Miezin, D. M. Barch, M. E. Raichle, S. E. Petersen, and B. L. Schlaggar, “Development of distinct control networks through segregation and integration,” Proceedings of the National Academy of Sciences, vol.104, no.33, pp.13507–13512, 2007. DOI: 10.1073/pnas.0705843104.20D. A. Fair, A. L. Cohen, J. D. Power, N. U. Dosenbach, J. A. Church, F. M. Miezin, B. L. Schlaggar, and S. E. Petersen, “Functional brain networks develop from a “local to distributed” organization,” PLoS com-putational biology, vol.5, no.5, e1000381, 2009. DOI: 10.1371/journal.pcbi.1000381.21K. Amemiya, T. Morita, D. N. Saito, M. Ban, K. Shimada, Y. Okamoto, H. Kosaka, H. Okazawa, M. Asada, and E. Naito, “Local-to-distant development of the cerebrocerebellar sensorimotor network in the typically developing human brain: a functional and diffusion MRI study,” Brain Structure and Function, vol.224, no.3, pp.1359-1375, 2019. DOI:10.1007/s00429-018-01821-5.22J. D. Allison, K. J. Meador, D. W. Loring, R. E. Figueroa, and J. C. Wright, “Functional MRI cerebral activation and deactivation during finger movement,” Neurology, vol.54, no.1, pp.135–142, 2000. DOI: 10.1212/wnl.54.1.135.23J. M. Newton, A. Sunderland, and P. A. Gowland, “fMRI signal decreas-es in ipsilateral primary motor cortex during unilateral hand movements are related to duration and side of movement,” Neuroimage, vol.24, no.4, pp.1080–1087, 2005. DOI: 10.1016/j.neuroimage.2004.10.003.24M. J. Hayashi, D. N. Saito, Y. Aramaki, T. Asai, Y. Fujibayashi, and N. Sadato, “Hemispheric asymmetry of frequency-dependent suppres-sion in the ipsilateral primary motor cortex during finger movement: A functional magnetic resonance imaging study,” Cerebral Cortex, vol.18, no.12, pp.2932–2940, 2008. DOI: 10.1093/cercor/bhn053.25P. Talelli, A. Ewas, W. Waddingham, J. C. Rothwell, and N. S. Ward, “Neural correlates of age-related changes in cortical neurophysiology,” NeuroImage, vol.40, no.4, pp.1772–1781, 2008. DOI: 10.1016/j.neuroim-age.2008.01.039.574-2 人の脳機能改善及びパフォーマンス向上のための研究開発:脳を適切に作動させる抑制機構の重要性

元のページ  ../index.html#61

このブックを見る