26K. J. Mullinger, S. D. Mayhew, A. P. Bagshaw, R. Bowtell, and S. T. Francis, “Evidence that the negative BOLD response is neuronal in origin: a simultaneous EEG–BOLD–CBF study in humans,” Neuroimage, vol.94, pp.263–274, 2014. DOI:10.1016/j.neuroimage.2014.02.029.27A. Ferbert, A. Priori, J. C. Rothwell, B. L. Day, J. G. Colebatch, and C. D. Marsden, “Interhemispheric inhibition of the human motor cortex,” The Journal of physiology. vol.453, no.1, pp.525–546, 1992. DOI: 10.1113/jphysiol.1992.sp019243.28M. Kobayashi, S. Hutchinson, G. Schlaug, and A. Pascual-Leone, “Ip-silateral motor cortex activation on functional magnetic resonance imag-ing during unilateral hand movements is related to interhemispheric interactions,” Neuroimage, vol.20, no.4, pp.2259–2270 , 2003. DOI: 10.1016/S1053-8119(03)00220-9.29A. Hübers, Y. Orekhov, and U. Ziemann, “Interhemispheric motor in-hibition: Its role in controlling electromyographic mirror activity,” Euro-pean Journal of Neuroscience, vol.28, no.2, pp.364–371, 2008. DOI: 10.1111/j.1460-9568.2008.06335.x.30K. Uehara and K. Funase, “Contribution of ipsilateral primary motor cortex activity to the execution of voluntary movements in humans: A review of recent studies,” The Journal of Physical Fitness and Sports Medicine, vol.3, no.3, pp.297–306, 2014. DOI: 10.7600/jpfsm.3.297.31P. Ciechanski, E. Zewdie, and A. Kirton, “Developmental profile of mo-tor cortex transcallosal inhibition in children and adolescents,” Journal of Neurophysiology, vol.118, no.1, pp.140–148, 2017. DOI: 10.1152/jn.00076.2017.32D. Wang, R. L. Buckner, and H. Liu, “Functional specialization in the human brain estimated by intrinsic hemispheric interaction,” Journal of Neuroscience, vol.34, no.37, pp.12341–12352, 2014. DOI: 10.1523/JNEUROSCI.0787-14.2014.33J. A. Kelso, “Phase transitions and critical behavior in human bimanu-al coordination,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.246, no.6, pp.R1000–R1004, 1984. DOI: 10.1152/ajpregu.1984.246.6.R1000.34R. P. Dum and P. L. Strick, “Spinal cord terminations of the medial wall motor areas in macaque monkeys,” Journal of Neuroscience, vol.16, no.20, pp.6513–6525, 1996. 35R. J. Morecraft, J. Ge, K. S. Stilwell-Morecraft, D. W. McNeal, M. A. Pizzimenti, and W. G. Darling, “Terminal distribution of the corti-cospinal projection from the hand/arm region of the primary motor cortex to the cervical enlargement in rhesus monkey,” Journal of Com-parative Neurology. vol.521, no.18, pp.4205–4235, 2013. DOI: 10.1002/cne.23410.36T. Isa, “Dexterous hand movements and their recovery after central nervous system injury,” Annual Review of Neuroscience, vol.42, pp.315–335, 2019. DOI:10.1146/annurev-neuro-070918-050436.37S. Uehara, I. Nambu, M. Matsumura, S. Kakei, and E. Naito, “Prior somatic stimulation improves performance of acquired motor skill by facilitating functional connectivity in cortico-subcortical motor circuits,” Journal of Behavioral and Brain Science, vol.2, no.3, pp.343–356, 2012. DOI:10.4236/jbbs.2012.23039.38S. H. Jang, S. H. Cho, Y. H. Kim, Y. H. Kwon, W. M. Byun, S. J. Lee, S. M. Park, and C. H. Chang, “Cortical activation changes associated with motor recovery in patients with precentral knob infarct,” NeuroRe-port, vol.15, no.3, pp.395–399, 2004.39E. Naito, T. Morita, and M. Asada, “Importance of the primary motor cortex in development of human hand/finger dexterity,” Cerebral cortex communications, vol.1, no.1, tgaa085, 2020. DOI: 10.1093/texcom/tgaa085.内藤 栄一 (ないとう えいいち)未来ICT研究所脳情報通信融合研究センター脳情報通信融合研究室室長博士(人間・環境学)神経科学朴 志勲 (ぱく じふん)未来ICT研究所脳情報通信融合研究センター脳情報通信融合研究室研究員博士(工学)計算モデル、認知発達ロボティクス守田 知代 (もりた ともよ)未来ICT研究所脳情報通信融合研究センター脳情報通信融合研究室主任研究員博士(人間・環境学)神経科学58 情報通信研究機構研究報告 Vol.68 No.1 (2022)4 いつまでも健康で幸せな生活のために:ヒトの脳機能を補助・拡張するための研究・技術開発
元のページ ../index.html#62