of Neuroscience, vol.34, no.8, pp.3023–3032, 2014.5P. A. Vaswani et al., “Persistent residual errors in motor adaptation tasks: reversion to baseline and exploratory escape,” J. Neurosci, vol.35, no.17, pp.6969–6977, April 29 2015.6M. A. Smith, J. Brandt, and R. Shadmehr, “Motor disorder in Hunting-ton's disease begins as a dysfunction in error feedback control,” Nature, vol.403, no.6769, pp.544–549, Feb. 3 2000.7M. A. Smith and R. Shadmehr, “Error correction and the basal ganglia. Response to Lawrence (2000),” Trends Cogn. Sci, vol.4, no.10, pp.367–369, Oct. 1 2000.8A. S. Therrien, D. M. Wolpert, and A. J. Bastian, “Effective reinforcement learning following cerebellar damage requires a balance between ex-ploration and motor noise,” Brain, vol.139, no.Pt 1, pp.101–114, Jan. 2016.9T. Ikegami, G. Ganesh, T. L. Gibo, T. Yoshioka, R. Osu, and M. Kawato, “Hierarchical motor adaptations negotiate failures during force field learning,” PLoS Comput. Biol., vol.17, no.4, p.e1008481, April 2021.10R. Shadmehr and F. A. Mussa-Ivaldi, “Adaptive representation of dy-namics during learning of a motor task,” J. Neurosci., vol.14, no.5 Pt 2, pp.3208–3224, May 1994.11R. Shadmehr and S. P. Wise, “The computational neurobiology of reach-ing and pointing,” Cambridge, Massachusetts: The MIT Press, 2005.12P. Morasso, “Spatial control of arm movements,” Exp. Brain. Res., vol.42, no.2, pp.223–237, 1981.13M. Kawato, K. Furukawa, and R. Suzuki, “A hierarchical neural-network model for control and learning of voluntary movement,” Biol. Cybern., vol.57, no.3, pp.169–185, 1987.14M. Kawato and D. Wolpert, “Internal models for motor control,” Novar-tis Found. Symp., vol.218, pp.291–304; discussion 304-7, 1998.15R. A. Schmidt and T. D. Lee, Motor control and learning : a behavioral emphasis, 4th ed. Champaign, IL: Human Kinetics, 2005, pp.vi, 537 p.16H. Imamizu et al., “Human cerebellar activity reflecting an acquired internal model of a new tool,” Nature, vol.403, no.6766, pp.192–195, Jan. 13 2000.17K. A. Thoroughman and R. Shadmehr, “Learning of action through adaptive combination of motor primitives,” Nature, vol.407, no.6805, pp.742–747, Oct. 12 2000.18O. Donchin, J. T. Francis, and R. Shadmehr, “Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control,” J. Neurosci., vol.23, no.27, pp.9032–9045, Oct. 8 2003.19J. Izawa, T. Rane, O. Donchin, and R. Shadmehr, “Motor adaptation as a process of reoptimization,” J. Neurosci., vol.28, no.11, pp.2883–2891, March 12 2008.20M. Mistry, E. Theodorou, S. Schaal, and M. Kawato, “Optimal control of reaching includes kinematic constraints,” J. Neurophysiol., vol.110, no.1, pp.1-11, July 2013.21J. R. Lackner and P. Dizio, “Rapid adaptation to Coriolis force perturba-tions of arm trajectory,” J. Neurophysiol., vol.72, no.1, pp.299–313, July 1994.22M. Kawato and K. Samejima, “Efficient reinforcement learning: compu-tational theories, neuroscience and robotics,” Curr. Opin. Neurobiol., vol.17, no.2, pp.205–212, April 2007.23M. M. Botvinick, “Hierarchical models of behavior and prefrontal func-tion,” Trends Cogn. Sci, vol.12, no.5, pp.201–208, May 2008.24J. Merel, M. Botvinick, and G. Wayne, “Hierarchical motor control in mammals and machines,” Nat. Commun., vol.10, no.1, p.5489, Dec. 2 2019.25R. Shadmehr, M. A. Smith, and J. W. Krakauer, “Error correction, sen-sory prediction, and adaptation in motor control,” Annu. Rev. Neurosci., vol.33, pp.89–108, 2010.池上 剛 (いけがみ つよし)未来ICT研究所脳情報通信融合研究センター主任研究員博士(教育学)運動制御・学習【受賞歴】2021年 第15回Motor Control 研究会 ベストプレゼンテーション賞2012年 第6回モーターコントロール研究会 優秀発表賞2010年 第4回モーターコントロール研究会 優秀発表賞64 情報通信研究機構研究報告 Vol.68 No.1 (2022)4 いつまでも健康で幸せな生活のために:ヒトの脳機能を補助・拡張するための研究・技術開発
元のページ ../index.html#68