HTML5 Webook
99/112

Learning and Control,” Neuron, vol.101, no.6, pp.1029–1041, 2019, doi:10.1016/j.neuron.2019.01.055.[114]Y. Shikano, Y. Nishimura, T. Okonogi, Y. Ikegaya, and T. Sasaki, “Vagus nerve spiking activity associ-ated with locomotion and cortical arousal states in a freely moving rat,” Eur. J. Neurosci., vol.49, no.10, pp.1298–1312, 2019, doi:10.1111/ejn.14275.[115]R. Shinkuma, S. Nishida, M. Kado, N. Maeda, and S. Nishimoto, “Relational Network of People Constructed on the Basis of Similarity of Brain Activities,” IEEE Access, vol.7, pp.110258–110266, 2019, doi:10.1109/Access.2019.2933990.[116]A. Takagi, M. Hirashima, D. Nozaki, and E. Burdet, “Individuals physically interacting in a group rap-idly coordinate their movement by estimating the collective goal,” eLife, vol.8, 2019, doi:10.7554/eLife. 41328.[117]K. Takami and M. Haruno, “Behavioral and func-tional connectivity basis for peer-inuenced by-stander participation in bullying,” Soc. Cogn. Aect. Neurosci., vol.14, no.1, pp.23–33, 2019, doi:10.1093/scan/nsy109.[118]H. Takemura et al., “Diusivity and quantitative T1 prole of human visual white matter tracts aer retinal ganglion cell damage,” Neuroimage Clin., vol.23, p.101826, 2019, doi:10.1016/j.nicl.2019.101826.[119]H. Takemura, F. Pestilli, and K. S. Weiner, “Comparative neuroanatomy: Integrating classic and modern methods to understand association bers connecting dorsal and ventral visual cortex,” Neurosci. Res., vol.146, pp.1–12, 2019, doi:10.1016/ j.neures.2018.10.011.[120]S. Takenaka et al., “Towards prognostic functional brain biomarkers for cervical myelopathy: A resting-state fMRI study,” Sci. Rep., vol.9, no.1, p.10456, 2019, doi:10.1038/s41598-019-46859-5.[121]T. Tanaka, F. Nishimura, C. Kakiuchi, K. Kasai, M. Kimura, and M. Haruno, “Interactive eects of OXTR and GAD1 on envy-associated behaviors and neural responses,” PLoS One, vol.14, no.1, p.e0210493, 2019, doi:10.1371/journal.pone.0210493.[122]S. Uehara, N. Mizuguchi, S. Hirose, S. Yamamoto, and E. Naito, “Involvement of human le frontopa-rietal cortices in neural processes associated with task-switching between two sequences of skilled nger movements,” Brain Res., vol.1722, p.146365, 2019, doi:10.1016/j.brainres.2019.146365.[123]M. Watanabe et al., “Ocular dri reects volitional action preparation,” Eur. J. Neurosci., vol.50, no.2, pp.1892–1910, 2019, doi:10.1111/ejn.14365.[124]N. Watanabe, J. P. Bhanji, H. Ohira, and M. R. Delgado, “Reward-Driven Arousal Impacts Preparation to Perform a Task via Amygdala-Caudate Mechanisms,” Cereb. Cortex, vol.29, no.7, pp.3010–3022, 2019, doi:10.1093/cercor/bhy166.[125]B. Wutzl, K. Leibnitz, F. Rattay, M. Kronbichler, M. Murata, and S. M. Golaszewski, “Genetic algorithms for feature selection when classifying severe chronic disorders of consciousness,” PLoS One, vol.14, no.7, p.e0219683, 2019, doi:10.1371/journal.pone.0219683.[126]A. Yokoi and J. Diedrichsen, “Neural Organization of Hierarchical Motor Sequence Representations in the Human Neocortex,” Neuron, vol.103, no.6, pp.1178–1190.e7, 2019, doi:10.1016/j.neuron.2019. 06.017.[127]Y. Yokota, T. Soshi, and Y. Naruse, “Error-related negativity predicts failure in competitive dual-player video games,” PLoS One, vol.14, no.2, p.e0212483, 2019, doi:10.1371/journal.pone.0212483.[128]S. Yuki, H. Nakatani, T. Nakai, K. Okanoya, and R. O. Tachibana, “Regulation of action selection based on metacognition in humans via a ventral and dorsal medial prefrontal cortical network,” Cortex, vol.119, pp.336–349, 2019, doi:10.1016/j.cortex.2019. 05.001.[129]Z. Zhou, Y. Ikegaya, and R. Koyama, “e Astrocytic cAMP Pathway in Health and Disease,” Int. J. Mol. Sci., vol.20, no.3, 2019, doi:10.3390/ijms20030779.◆2020[130]R. Amerineni, R. S. Gupta, and L. Gupta, “CINET: A Brain–Inspired Deep Learning Context-Integrating Neural Network Model for Resolving Ambiguous Stimuli,” Brain Sci., vol.10, no.2, 2020, doi:10.3390/brainsci10020064.[131]T. Araki et al., “Flexible neural interfaces for brain implants-the pursuit of thinness and high density,” Flex Print Electron, vol.5, no.4, 043002, 2020, doi:10.1088/2058-8585/abc3ca.[132]T. Araki, Y. Ikegaya, and R. Koyama, “Microglia at-tenuate the kainic acid-induced death of hippocampal neurons in slice cultures,” Neuropsychopharmacol Rep., vol.40, no.1, pp.85–91, 2020, doi:10.1002/npr2. 95CiNetの研究成果(2018年から2022年までに査読付き国際誌に発表された論文)

元のページ  ../index.html#99

このブックを見る